The coronavirus disease 2019 (COVID-19) pandemic has caused a surge in demand for face masks, with the massive consumption of masks leading to an increase in resource-related and environmental concerns. In this work, we fabricated meltblown polypropylene (mb-PP)-based high-performance planar face masks and investigated the effects of six commonly used disinfection methods and various mask-wearing periods on the reusability of these masks. The results show that, after three cycles of treatment using hot water at 70 °C for 30 min, which is one of the most scalable, user-friendly methods for viral disinfection, the particle filtration efficiency (PFE) of the mask remained almost unchanged. After mask wearing for 24 h and subsequent disinfection using the same treatment procedures, the PFE decreased to 91.3%; the average number of bacterial and fungal colonies was assessed to be 9.2 and 51.6 colony-forming units per gram (CFU∙g−1), respectively; and coliform and pyogenic bacteria were not detected. Both the PFE and the microbial indicators are well above the standard for reusable masks after disinfection. Schlieren photography was then used to assess the capabilities of used and disinfected masks during use; it showed that the masks exhibit a high performance in suppressing the spread of breathed air.