BMC Endocrine Disorders (Mar 2024)
Plasma adiponectin/leptin ratio associates with subcutaneous abdominal and omental adipose tissue characteristics in women
Abstract
Abstract Background A better understanding of adipose tissue (AT) dysfunction, which includes morphological and functional changes such as adipocyte hypertrophy as well as impaired adipogenesis, lipid storage/mobilization, endocrine and inflammatory responses, is needed in the context of obesity. One dimension of AT dysfunction, secretory adiposopathy, often assessed as a low plasma adiponectin (A)/leptin (L) ratio, is commonly observed in obesity. The aim of this study was to examine markers of AT development and metabolism in 67 women of varying age and adiposity (age: 40-62 years; body mass index, BMI: 17-41 kg/m2) according to levels of adiponectinemia, leptinemia or the plasma A/L ratio. Methods Body composition, regional AT distribution and circulating adipokines were determined. Lipolysis was measured from glycerol release in subcutaneous abdominal (SCABD) and omental (OME) adipocytes under basal, isoproterenol-, forskolin (FSK)- and dibutyryl-cyclic AMP (DcAMP)-stimulated conditions. Adipogenesis (C/EBP-α/β/δ, PPAR-γ2 and SREBP-1c) and lipid metabolism (β2-ARs, HSL, FABP4, LPL and GLUT4) gene expression (RT-qPCR) was assessed in both fat depots. Participants in the upper versus lower tertile of adiponectin, leptin or the A/L ratio were compared. Results Basal lipolysis was similar between groups. Women with a low plasma A/L ratio were characterized by higher adiposity and larger SCABD and OME adipocytes (p<0.01) compared to those with a high ratio. In OME adipocytes, women in the low adiponectinemia tertile showed higher isoproterenol-stimulated lipolysis (0.01<p<0.05), while those in the high leptinemia tertile displayed increased lipolytic response to this agent (p<0.05). However, lipolysis stimulated by isoproterenol was enhanced in both compartments (0.01<p<0.05) in women with a low plasma A/L ratio. AT abundance of selected transcripts related to adipogenesis or lipid metabolism did not differ between women with or without secretory adiposopathy, except for lower GLUT4 mRNA levels in OME fat. Conclusions Secretory adiposopathy assessed as the plasma A/L ratio, more so than adiponectin or leptin levels alone, discriminates low and elevated lipolysis in OME and SCABD adipocytes despite similar AT expression of selected genes involved in lipid metabolism.
Keywords