PLoS ONE (Jan 2024)
Finding optimum climatic parameters for high tomato yield in Benin (West Africa) using frequent pattern growth algorithm.
Abstract
Tomato is one of the most appreciated vegetables in the world. Predicting its yield and optimizing its culture is important for global food security. This paper addresses the challenge of finding optimum climatic values for a high tomato yield. The Frequent Pattern Growth (FPG) algorithm was considered to establish the associations between six climate variables: minimum and maximum temperatures, maximum humidity, sunshine (Sun), rainfall, and evapotranspiration (ET), collected over 26 years in the three agro-ecological Zones of Benin. Monthly climate data were aggregated with yield data over the same period. After aggregation, the data were transformed into 'low', 'medium', and 'high' attributes using the threshold values defined. Then, the rules were generated using the minimum support set to 0.2 and the confidence to 0.8. Only the rules with the consequence 'high yield' were screened. The best yield patterns were observed in the Guinean Zone, followed by the Sudanian. The results indicated that high tomato yield was associated with low ET in all areas considered. Minimum and maximum temperatures, maximum humidity, and Sun were medium in every Zone. Moreover, rainfall was high in the Sudanian Zone, unlike the other regions where it remained medium. These results are useful in assessing climate variability's impact on tomato production. Thus, they can help farmers make informed decisions on cultivation practices to optimize production in a changing environment. In addition, the findings of this study can be considered in other regions and adapted to other crops.