Symmetry (Jun 2022)
Successive Low-Light Image Enhancement Using an Image-Adaptive Mask
Abstract
Low-light images are obtained in dark environments or in environments where there is insufficient light. Because of this, low-light images have low intensity values and dimmed features, making it difficult to directly apply computer vision or image recognition software to them. Therefore, to use computer vision processing on low-light images, an image improvement procedure is needed. There have been many studies on how to enhance low-light images. However, some of the existing methods create artifact and distortion effects in the resulting images. To improve low-light images, their contrast should be stretched naturally according to their features. This paper proposes the use of a low-light image enhancement method utilizing an image-adaptive mask that is composed of an image-adaptive ellipse. As a result, the low-light regions of the image are stretched and the bright regions are enhanced in a way that appears natural by an image-adaptive mask. Moreover, images that have been enhanced using the proposed method are color balanced, as this method has a color compensation effect due to the use of an image-adaptive mask. As a result, the improved image can better reflect the image’s subject, such as a sunset, and appears natural. However, when low-light images are stretched, the noise elements are also enhanced, causing part of the enhanced image to look dim and hazy. To tackle this issue, this paper proposes the use of guided image filtering based on using triple terms for the image-adaptive value. Images enhanced by the proposed method look natural and are objectively superior to those enhanced via other state-of-the-art methods.
Keywords