ISPRS International Journal of Geo-Information (Apr 2018)
Improving ASTER GDEM Accuracy Using Land Use-Based Linear Regression Methods: A Case Study of Lianyungang, East China
Abstract
The Advanced Spaceborne Thermal-Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) is important to a wide range of geographical and environmental studies. Its accuracy, to some extent associated with land-use types reflecting topography, vegetation coverage, and human activities, impacts the results and conclusions of these studies. In order to improve the accuracy of ASTER GDEM prior to its application, we investigated ASTER GDEM errors based on individual land-use types and proposed two linear regression calibration methods, one considering only land use-specific errors and the other considering the impact of both land-use and topography. Our calibration methods were tested on the coastal prefectural city of Lianyungang in eastern China. Results indicate that (1) ASTER GDEM is highly accurate for rice, wheat, grass and mining lands but less accurate for scenic, garden, wood and bare lands; (2) despite improvements in ASTER GDEM2 accuracy, multiple linear regression calibration requires more data (topography) and a relatively complex calibration process; (3) simple linear regression calibration proves a practicable and simplified means to systematically investigate and improve the impact of land-use on ASTER GDEM accuracy. Our method is applicable to areas with detailed land-use data based on highly accurate field-based point-elevation measurements.
Keywords