Physical Review X (May 2017)

Quantum Correlations between Single Telecom Photons and a Multimode On-Demand Solid-State Quantum Memory

  • Alessandro Seri,
  • Andreas Lenhard,
  • Daniel Rieländer,
  • Mustafa Gündoğan,
  • Patrick M. Ledingham,
  • Margherita Mazzera,
  • Hugues de Riedmatten

DOI
https://doi.org/10.1103/PhysRevX.7.021028
Journal volume & issue
Vol. 7, no. 2
p. 021028

Abstract

Read online Read online

Quantum correlations between long-lived quantum memories and telecom photons that can propagate with low loss in optical fibers are an essential resource for the realization of large-scale quantum information networks. Significant progress has been realized in this direction with atomic and solid-state systems. Here, we demonstrate quantum correlations between a telecom photon and a multimode on-demand solid state quantum memory. This is achieved by mapping a correlated single photon onto a spin collective excitation in a Pr^{3+}:Y_{2}SiO_{5} crystal for a controllable time. The stored single photons are generated by cavity-enhanced spontaneous parametric down-conversion and heralded by their partner photons at telecom wavelength. These results represent the first demonstration of a multimode on-demand solid state quantum memory for external quantum states of light. They provide an important resource for quantum repeaters and pave the way for the implementation of quantum information networks with distant solid state quantum nodes.