Journal of Vascular Surgery Cases and Innovative Techniques (Apr 2024)

Utilization of coronary computed tomography angiography and computed tomography-derived fractional flow reserve in a critical limb-threatening ischemia cohort

  • Gregory A. Stanley, MD,
  • Markus D. Scherer, MD,
  • Michelle M. Hajostek, PA,
  • Halim Yammine, MD,
  • Charles S. Briggs, MD,
  • Hector O. CrespoSoto, MD,
  • Tzvi Nussbaum, MD,
  • Frank R. Arko, III, MD

Journal volume & issue
Vol. 10, no. 2
p. 101272

Abstract

Read online

Objective: Patients with peripheral arterial disease (PAD) have a significant risk of myocardial infarction and death secondary to concomitant coronary artery disease (CAD). This is particularly true in patients with critical limb-threatening ischemia (CLTI) who exceed a 20% mortality rate at 6 months despite standard treatment with risk factor modification. Although systematic preoperative coronary testing is not recommended for patients with PAD without cardiac symptoms, the clinical manifestations of CAD are often muted in patients with CLTI due to poor mobility and activity intolerance. Thus, the true incidence and impact of “silent” CAD in a CLTI cohort is unknown. This study aims to determine the prevalence of ischemia-producing coronary artery stenosis in a CLTI cohort using coronary computed tomography angiography (cCTA) and computed tomography (CT)-derived fractional flow reserve (FFRCT), a noninvasive imaging modality that has shown significant correlation to cardiac catheterization in the detection of clinically relevant coronary ischemia. Methods: Patients presenting with newly diagnosed CLTI at our institution from May 2020 to April 2021 were screened for underlying CAD. Included subjects had no known history of CAD, no cardiac symptoms, and no anginal equivalent complaints at presentation. Patients underwent cCTA and FFRCT evaluation and were classified by the anatomic location and severity of CAD. Significant coronary ischemia was defined as FFRCT ≤0.80 distal to a >30% coronary stenosis, and severe coronary ischemia was documented at FFRCT ≤0.75, consistent with established guidelines. Results: A total of 170 patients with CLTI were screened; 65 patients (38.2%) had no coronary symptoms and met all inclusion/exclusion criteria. Twenty-four patients (31.2%) completed cCTA and FFRCT evaluation. Forty-one patients have yet to complete testing secondary to socioeconomic factors (insurance denial, transportation inaccessibility, testing availability, etc). The mean age of included subjects was 65.4 ± 7.0 years, and 15 (62.5%) were male. Patients presented with ischemic rest pain (n = 7; 29.1%), minor tissue loss (n = 14; 58.3%) or major tissue loss (n = 3; 12.5%). Significant (≥50%) coronary artery stenosis was noted on cCTA in 19 of 24 patients (79%). Significant left main coronary artery stenosis was identified in two patients (10%). When analyzed with FFRCT, 17 patients (71%) had hemodynamically significant coronary ischemia (FFRCT ≤0.8), and 54% (n = 13) had lesion-specific severe coronary ischemia (FFRCT ≤0.75). The mean FFRCT in patients with coronary ischemia was 0.70 ± 0.07. Multi-vessel disease pattern was present in 53% (n = 9) of patients with significant coronary stenosis. Conclusions: The use of cCTA-derived fractional flow reserve demonstrates a significant percentage of patients with CLTI have silent (asymptomatic) coronary ischemia. More than one-half of these patients have lesion-specific severe ischemia, which may be associated with increased mortality when treated solely with risk factor modification. cCTA and FFRCT diagnosis of significant coronary ischemia has the potential to improve cardiac care, perioperative morbidity, and long-term survival curves of patients with CLTI. Systemic improvements in access to care will be needed to allow for broad application of these imaging assessments should they prove universally valuable. Additional study is required to determine the benefit of selective coronary revascularization in patients with CLTI.

Keywords