Nanoscale Research Letters (Dec 2019)

Development of a 1550-nm InAs/GaAs Quantum Dot Saturable Absorber Mirror with a Short-Period Superlattice Capping Structure Towards Femtosecond Fiber Laser Applications

  • Cheng Jiang,
  • Jiqiang Ning,
  • Xiaohui Li,
  • Xu Wang,
  • Ziyang Zhang

DOI
https://doi.org/10.1186/s11671-019-3188-3
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Low-dimensional III–V InAs/GaAs quantum dots (QDs) have been successfully applied to semiconductor saturable absorber mirrors (SESAMs) working at a 900–1310-nm wavelength range for ultrafast pulsed laser applications benefitting from their broad bandwidth, wavelength flexibility, and low saturation fluence. However, it is very challenging to obtain a high-performance QD-SESAM working at the longer wavelength range around 1550 nm due to the huge obstacle to epitaxy growth of the QD structures. In this work, for the first time, it is revealed that, the InAs/GaAs QD system designed for the 1550-nm light emission range, the very weak carrier relaxation process from the capping layers (CLs) to QDs is mainly responsible for the poor emission performance, according to which we have developed a short-period superlattice (In0.20Ga0.80As/In0.30Ga0.70As)5 as the CL for the QDs and has realized ~ 10 times stronger emission at 1550 nm compared with the conventional InGaAs CL. Based on the developed QD structure, high-performance QD-SESAMs have been successfully achieved, exhibiting a very small saturation intensity of 13.7 MW/cm2 and a large nonlinear modulation depth of 1.6 %, simultaneously, which enables the construction of a 1550-nm femtosecond mode-locked fiber lasers with excellent long-term working stability.

Keywords