Abstract and Applied Analysis (Jan 2013)

Recursive Neural Networks Based on PSO for Image Parsing

  • Guo-Rong Cai,
  • Shui-Li Chen

DOI
https://doi.org/10.1155/2013/617618
Journal volume & issue
Vol. 2013

Abstract

Read online

This paper presents an image parsing algorithm which is based on Particle Swarm Optimization (PSO) and Recursive Neural Networks (RNNs). State-of-the-art method such as traditional RNN-based parsing strategy uses L-BFGS over the complete data for learning the parameters. However, this could cause problems due to the nondifferentiable objective function. In order to solve this problem, the PSO algorithm has been employed to tune the weights of RNN for minimizing the objective. Experimental results obtained on the Stanford background dataset show that our PSO-based training algorithm outperforms traditional RNN, Pixel CRF, region-based energy, simultaneous MRF, and superpixel MRF.