JMIR Mental Health (Oct 2022)

Motor Resonance During Action Observation and Its Relevance to Virtual Clinical Consultations: Observational Study Using Transcranial Magnetic Stimulation

  • Urvakhsh Meherwan Mehta,
  • Rakshathi Basavaraju,
  • Abhishek Ramesh,
  • Muralidharan Kesavan,
  • Jagadisha Thirthalli

DOI
https://doi.org/10.2196/40652
Journal volume & issue
Vol. 9, no. 10
p. e40652

Abstract

Read online

BackgroundVirtual clinical interactions have increased tremendously since the onset of the COVID-19 pandemic. While they certainly have their advantages, there also exist potential limitations, for example, in establishing a therapeutic alliance, discussing complex clinical scenarios, etc. This may be due to possible disruptions in the accurate activation of the human mirror neuron system (MNS), a posited physiological template for effective social communication. ObjectiveThis study aimed to compare motor resonance, a putative marker of MNS activity, estimated using transcranial magnetic stimulation (TMS) elicited while viewing virtual (video-based) and actual or real (enacted by a person) actions in healthy individuals. We hypothesized that motor resonance will be greater during real compared to virtual action observation. MethodsWe compared motor resonance or motor-evoked potential (MEP) facilitation during the observation of virtual (presented via videos) and real (enacted in person) actions, relative to static image observation in healthy individuals using TMS. The MEP recordings were obtained by 2 single-pulse (neuronal membrane excitability–driven) TMS paradigms of different intensities and 2 paired-pulse (cortical gamma-aminobutyric acid-interneuron–driven) TMS paradigms. ResultsThis study comprised 64 participants. Using the repeated measures ANOVA, we observed a significant time effect for MEP facilitation from static to virtual and real observation states when recorded using 3 of the 4 TMS paradigms. Post hoc pairwise comparisons with Benjamini-Hochberg false discovery rate correction revealed significant MEP facilitation in both virtual and real observation states relative to static image observation; however, we also observed a significant time effect between the 2 action observation states (real > virtual) with 2 of the 4 TMS paradigms. ConclusionsOur results indicate that visual cues expressed via both virtual (video) or real (in person) modes elicit physiological responses within the putative MNS, but this effect is more pronounced for actions presented in person. This has relevance to the appropriate implementation of digital health solutions, especially those pertaining to mental health.