Energies (Oct 2022)

Seepage Performance of Fibre Bundle Drainage Pipes: Particle Flow Simulation and Laboratory Testing

  • Sifeng Zhang,
  • Guozhang Ren,
  • Guojian Zhang,
  • Ziyin Ren,
  • Chong Xia,
  • Yuan Gao

DOI
https://doi.org/10.3390/en15197270
Journal volume & issue
Vol. 15, no. 19
p. 7270

Abstract

Read online

Mining coal, oil and other energy will form much slope engineering, such as open-pit mine slope and oil depot slope. The groundwater seepage seriously affects the stability of these slope engineering projects. Drainage pipes are commonly used in slope engineering projects to reduce the risk of moisture decreasing soil stability. Such pipes are prone to blockage by soil accumulation after a period of operation, resulting in decreased drainage or complete failure. By installing fibre bundles in drainage pipes, drainage can be maintained under soil ingress. This paper conducted particle flow simulations of the influences of soil particles on the clogging of geotextile filters and drainage pipes under various influences and estimated their seepage rates. Higher water pressure, smaller flower hole intervals in the pipe, greater soil friction angles and smaller pipe inclination angles are less conducive to drainage. Under silting conditions, the seepage and drainage performance of a drainage pipe can be improved by installing a fibre bundle. Five types of fibre bundles were tested with plastic rope providing the best drainage effect. With plastic rope and cotton rope, the best drainage is achieved using uneven arrangements of fibre bundles. In contrast, nylon rope, hemp rope and polyester rope perform best when uniformly arranged. The greater the number of fibre bundles per unit cross-sectional area of pipe, the better the seepage conductivity. Seepage is also greater when the soil in the pipe has a higher sand content. These results provide a reference for the design and construction of more reliable drainage systems for slope engineering in wet areas.

Keywords