Climate of the Past (Feb 2021)
Mid-Pliocene Atlantic Meridional Overturning Circulation simulated in PlioMIP2
- Z. Zhang,
- X. Li,
- C. Guo,
- O. H. Otterå,
- O. H. Otterå,
- K. H. Nisancioglu,
- N. Tan,
- C. Contoux,
- G. Ramstein,
- R. Feng,
- B. L. Otto-Bliesner,
- E. Brady,
- D. Chandan,
- W. R. Peltier,
- M. L. J. Baatsen,
- A. S. von der Heydt,
- J. E. Weiffenbach,
- C. Stepanek,
- G. Lohmann,
- G. Lohmann,
- Q. Zhang,
- Q. Li,
- M. A. Chandler,
- L. E. Sohl,
- A. M. Haywood,
- S. J. Hunter,
- J. C. Tindall,
- C. Williams,
- D. J. Lunt,
- W.-L. Chan,
- A. Abe-Ouchi
Affiliations
- Z. Zhang
- Department of Atmospheric Science, School of Environmental studies, China University of Geoscience, Wuhan 430074, China
- X. Li
- Department of Atmospheric Science, School of Environmental studies, China University of Geoscience, Wuhan 430074, China
- C. Guo
- NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, 5007 Bergen, Norway
- O. H. Otterå
- NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, 5007 Bergen, Norway
- O. H. Otterå
- Centre for Early Sapiens Behaviour, 5007 Bergen, Norway
- K. H. Nisancioglu
- Department of Earth Science and Bjerknes Centre for Climate Research, University of Bergen, 5007 Bergen, Norway
- N. Tan
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- C. Contoux
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- G. Ramstein
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- R. Feng
- Department of Geosciences, University of Connecticut, Storrs, USA
- B. L. Otto-Bliesner
- Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, USA
- E. Brady
- Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, USA
- D. Chandan
- Department of Physics, University of Toronto, Toronto, Canada
- W. R. Peltier
- Department of Physics, University of Toronto, Toronto, Canada
- M. L. J. Baatsen
- Institute for Marine and Atmospheric research Utrecht (IMAU), Department of Physics, Utrecht University, Utrecht, the Netherlands
- A. S. von der Heydt
- Institute for Marine and Atmospheric research Utrecht (IMAU), Department of Physics, Utrecht University, Utrecht, the Netherlands
- J. E. Weiffenbach
- Institute for Marine and Atmospheric research Utrecht (IMAU), Department of Physics, Utrecht University, Utrecht, the Netherlands
- C. Stepanek
- Alfred Wegener Institute – Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- G. Lohmann
- Alfred Wegener Institute – Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- G. Lohmann
- Institute for Environmental Physics, University of Bremen, Bremen, Germany
- Q. Zhang
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
- Q. Li
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
- M. A. Chandler
- CCSR/GISS, Columbia University, New York, USA
- L. E. Sohl
- CCSR/GISS, Columbia University, New York, USA
- A. M. Haywood
- School of Earth and Environment, University of Leeds, Leeds, UK
- S. J. Hunter
- School of Earth and Environment, University of Leeds, Leeds, UK
- J. C. Tindall
- School of Earth and Environment, University of Leeds, Leeds, UK
- C. Williams
- School of Geographical Sciences, University of Bristol, Bristol, UK
- D. J. Lunt
- School of Geographical Sciences, University of Bristol, Bristol, UK
- W.-L. Chan
- Atmosphere and Ocean Research Institute (AORI), University of Tokyo, Kashiwa, Japan
- A. Abe-Ouchi
- Atmosphere and Ocean Research Institute (AORI), University of Tokyo, Kashiwa, Japan
- DOI
- https://doi.org/10.5194/cp-17-529-2021
- Journal volume & issue
-
Vol. 17
pp. 529 – 543
Abstract
In the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), coupled climate models have been used to simulate an interglacial climate during the mid-Piacenzian warm period (mPWP; 3.264 to 3.025 Ma). Here, we compare the Atlantic Meridional Overturning Circulation (AMOC), poleward ocean heat transport and sea surface warming in the Atlantic simulated with these models. In PlioMIP2, all models simulate an intensified mid-Pliocene AMOC. However, there is no consistent response in the simulated Atlantic ocean heat transport nor in the depth of the Atlantic overturning cell. The models show a large spread in the simulated AMOC maximum, the Atlantic ocean heat transport and the surface warming in the North Atlantic. Although a few models simulate a surface warming of ∼ 8–12 ∘C in the North Atlantic, similar to the reconstruction from Pliocene Research, Interpretation and Synoptic Mapping (PRISM) version 4, most models appear to underestimate this warming. The large model spread and model–data discrepancies in the PlioMIP2 ensemble do not support the hypothesis that an intensification of the AMOC, together with an increase in northward ocean heat transport, is the dominant mechanism for the mid-Pliocene warm climate over the North Atlantic.