ChemEngineering (Mar 2022)

Ozone Kinetic Studies Assessment for the PPCPs Abatement: Mixtures Relevance

  • João Gomes,
  • Carla Bernardo,
  • Fátima Jesus,
  • Joana Luísa Pereira,
  • Rui C. Martins

DOI
https://doi.org/10.3390/chemengineering6020020
Journal volume & issue
Vol. 6, no. 2
p. 20

Abstract

Read online

The increasing consumption of pharmaceutical and personal care products (PPCPs) by humankind has been causing an accumulation of contaminants (commonly referred to as contaminants of emerging concern), in effluents and water resources. Ozonation can be used to improve the removal of these contaminants during water treatment to alleviate this burden. In this work, the degradation of methyl (MP), propylparaben (PP), paracetamol (PCT), sulfamethoxazole (SMX), and carbamazepine (CBZ) by ozonation was assessed both for individual compounds and for mixtures with increasing complexity (two to five compounds). Ozonation was performed at pH3 to gain an insight on the exclusive action of molecular ozone as oxidizing agent. The degradation of contaminants was described as a function of time and transferred ozone dose, and the corresponding pseudo-first order kinetic rate constants (k’) were determined. PPCPs were degraded individually within 1.5 to 10 min. CBZ was the most quickly degraded (k’ = 1.25 min−1) and MP the most resistant to ozone (k’ = 0.25 min−1). When in the mixture, the degradation rate of the contaminants was slower. For parabens, the increase of the number of compounds in the mixture led to an exponential decrease of the k’ values. Moreover, the presence of more PPCPs within the mixture increased energy consumption associated with the treatment, thereby reflecting higher economic costs.

Keywords