Applied Sciences (Sep 2024)
Study of Millimeter-Wave Fuze Echo Characteristics under Rainfall Conditions Using the Monte Carlo Method
Abstract
Due to the similarity in wavelength between millimeter-wave (MMW) signals and raindrop diameters, rainfall induces significant attenuation and scattering effects that challenge the detection performance of MMW fuzes in rainy environments. To enhance the adaptability of frequency-modulated MMW fuzes in such conditions, the effects of rain on MMW signal attenuation and scattering are investigated. A mathematical model for the multipath echo signals of the fuze was developed. The Monte Carlo method was employed to simulate echo signals considering multiple scattering, and experimental validations were conducted. The results from simulations and experiments revealed that rainfall increases the bottom noise of the echo signal, with rain backscatter noise predominantly affecting the lower end of the echo signal spectrum. However, rain conditions below torrential levels did not significantly impact the detection of strong reflection targets at the high end of the spectrum. The modeling approach and findings presented offer theoretical support for designing MMW fuzes with improved environmental adaptability.
Keywords