Nature Communications (Apr 2021)

Imperceptible energy harvesting device and biomedical sensor based on ultraflexible ferroelectric transducers and organic diodes

  • Andreas Petritz,
  • Esther Karner-Petritz,
  • Takafumi Uemura,
  • Philipp Schäffner,
  • Teppei Araki,
  • Barbara Stadlober,
  • Tsuyoshi Sekitani

DOI
https://doi.org/10.1038/s41467-021-22663-6
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 14

Abstract

Read online

Next-generation energy autonomous biomedical devices must easily conform to human skin, provide accurate health monitoring and allow for scalable manufacturing. Here, the authors report ultraflexible ferroelectric transducers and organic diodes for biomedical sensing and energy harvesting. Ultraflexible ferroelectric transducers based on P(VDF:TrFE) co-polymer with optimised crystalline structure by thermal annealing are utilised as sensors for vital parameters detection and as piezoelectric nanogenerators (PENG). The PENGs were incorporated in an energy harvesting system including OTFT-based rectifying circuits and thin film capacitors on a single ultrathin substrate. Both developments could pave the way towards self-powering, imperceptible e-health systems.