International Journal of Nanomedicine (Mar 2013)

Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models

  • Sun Z,
  • Yathindranath V,
  • Worden M,
  • Thliveris JA,
  • Chu S,
  • Parkinson FE,
  • Hegmann T,
  • Miller DW

Journal volume & issue
Vol. 2013, no. default
pp. 961 – 970

Abstract

Read online

Zhizhi Sun,1 Vinith Yathindranath,2 Matthew Worden,3 James A Thliveris,4 Stephanie Chu,1 Fiona E Parkinson,1 Torsten Hegmann,1–3 Donald W Miller1 1Department of Pharmacology and Therapeutics, 2Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; 3Chemical Physics Interdisciplinary Program, Liquid Crystal Institute, Kent State University, Kent, OH, USA; 4Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada  Background: Aminosilane-coated iron oxide nanoparticles (AmS-IONPs) have been widely used in constructing complex and multifunctional drug delivery systems. However, the biocompatibility and uptake characteristics of AmS-IONPs in central nervous system (CNS)-relevant cells are unknown. The purpose of this study was to determine the effect of surface charge and magnetic field on toxicity and uptake of AmS-IONPs in CNS-relevant cell types. Methods: The toxicity and uptake profile of positively charged AmS-IONPs and negatively charged COOH-AmS-IONPs of similar size were examined using a mouse brain microvessel endothelial cell line (bEnd.3) and primary cultured mouse astrocytes and neurons. Cell accumulation of IONPs was examined using the ferrozine assay, and cytotoxicity was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results: No toxicity was observed in bEnd.3 cells at concentrations up to 200 µg/mL for either AmS-IONPs or COOH-AmS-IONPs. AmS-IONPs at concentrations above 200 µg/mL reduced neuron viability by 50% in the presence or absence of a magnetic field, while only 20% reductions in viability were observed with COOH-AmS-IONPs. Similar concentrations of AmS-IONPs in astrocyte cultures reduced viability to 75% but only in the presence of a magnetic field, while exposure to COOH-AmS-IONPs reduced viability to 65% and 35% in the absence and presence of a magnetic field, respectively. Cellular accumulation of AmS-IONPs was greater in all cell types examined compared to COOH-AmS-IONPs. Rank order of cellular uptake for AmS-IONPs was astrocytes > bEnd.3 > neurons. Accumulation of COOH-AmS-IONPs was minimal and similar in magnitude in different cell types. Magnetic field exposure enhanced cellular accumulation of both AmS- and COOH-AmS-IONPs. Conclusion: Both IONP compositions were nontoxic at concentrations below 100 µg/mL in all cell types examined. At doses above 100 µg/mL, neurons were more sensitive to AmS-IONPs, whereas astrocytes were more vulnerable toward COOH-AmS-IONPs. Toxicity appears to be dependent on the surface coating as opposed to the amount of iron-oxide present in the cell. Keywords: drug delivery, magnetic nanoparticles, magnetic field, biocompatibility, cellular accumulation, brain