Individual and Combined Effects of High-Temperature Stress at Booting and Flowering Stages on Rice Grain Yield
Aqib Mahmood,
Iftikhar Ali,
Wei Wang,
Syed Tahir Ata-Ul-Karim,
Bing Liu,
Leilei Liu,
Yan Zhu,
Weixing Cao,
Liang Tang
Affiliations
Aqib Mahmood
National Engineering and Technology Center for Information Agriculture, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
Iftikhar Ali
National Engineering and Technology Center for Information Agriculture, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
Wei Wang
National Engineering and Technology Center for Information Agriculture, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
Syed Tahir Ata-Ul-Karim
Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
Bing Liu
National Engineering and Technology Center for Information Agriculture, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
Leilei Liu
National Engineering and Technology Center for Information Agriculture, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
Yan Zhu
National Engineering and Technology Center for Information Agriculture, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
Weixing Cao
National Engineering and Technology Center for Information Agriculture, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
Liang Tang
National Engineering and Technology Center for Information Agriculture, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
Extreme temperature events as a consequence of global climate change result in a significant decline in rice yield. A two year phytotron experiment was conducted using three temperature levels and two heating durations to compare the effects of heat stress at booting (BT), flowering (FL), and combined (BT + FL) stages on rice yield and yield components. Compared with T1 (Tmean of 27 °C), heat stress at BT + FL and BT stages produced more regenerated tillers and compensated more for yield loss than heat stress at FL. Heat stress at BT + FL stages alleviated spikelet sterility and yield loss of original tillers compared to heat stress at FL. The greater variation of yield per plant (YPP) under heat stress at flowering as compared to BT and BT + FL stages was accompanied by a higher decrease in spikelet fertility, while, at BT and BT + FL stages, spikelet number per plant and 1000-grain weight also contributed well to variation in yield. Furthermore, heat stress during BT and BT + FL stages caused a significant decline in spikelet fertility of the upper part of panicles, followed by middle and lower parts, while heat stress at the FL stage responded inversely. For every 1 °C day increase in heat degree days at BT, FL, and BT + FL stages, YPPO (only original tillers) declined by 2.9%, 2.5%, and 6.0%, and YPPT (including original + regenerated tillers) decreased by 5.8%, 2.7%, and 2.2%, respectively. The projected alleviation effects under BT + FL stages of heat stress in contrast to single-stage heat stress would help to accurately estimate rice yield under extreme temperature events, as well as to develop a heat-tolerant rice cultivar.