Biomedicine & Pharmacotherapy (Dec 2023)

Essential oils of Pinus sylvestris, Citrus limon and Origanum vulgare exhibit high bactericidal and anti-biofilm activities against Neisseria gonorrhoeae and Streptococcus suis

  • Paula Jurado,
  • Cristina Uruén,
  • Sara Martínez,
  • Elena Lain,
  • Sandra Sánchez,
  • Antonio Rezusta,
  • Víctor López,
  • Jesús Arenas

Journal volume & issue
Vol. 168
p. 115703

Abstract

Read online

Antimicrobial resistance is a worldwide problem that urges novel alternatives to treat infections. In attempts to find novel molecules, we assess the antimicrobial potential of seven essential oils (EO) of different plants (Pinus sylvestris, Citrus limon, Origanum vulgare, Cymbopogon martini, Cinnamomum cassia, Melaleuca alternifolia and Eucalyptus globulus) against two multidrug-resistant bacteria species, i.e. Neisseria gonorrhoeae and Streptococcus suis. EOs of P. sylvestris and C. limon revealed higher bactericidal activity (MIC ≤ 0.5 mg/mL) and capacity to rapidly disperse biofilms of several N. gonorrhoeae clinical isolates than other EOs. Examination of biofilms exposed to both EO by electron microscopy revealed a reduction of bacterial aggregates, high production of extracellular vesicles, and alteration of cell integrity. This activity was dose-dependent and was enhanced in DNase I-treated biofilms. Antibiotic susceptibility studies confirmed that both EOs affected the outer membrane permeability, and analysis of EO- susceptibility of an LPS-deficient mutant suggested that both EO target the LPS bilayer. Further analysis revealed that α- and β-pinene and d-limonene, components of both EO, contribute to such activity. EO of C. martini, C. cassia, and O. vulgare exhibited promising antimicrobial activity (MIC ≤ 0.5 mg/mL) against S. suis, but only EO of O. vulgare exhibited a high biofilm dispersal activity, which was also confirmed by electron microscopy studies. To conclude, the EO of P. sylvestris, C. limon and O. vulgare studied in this work exhibit bactericidal and anti-biofilm activities against gonococcus and streptococcus, respectively.

Keywords