Cells (May 2021)
New Treatment Strategy Targeting Galectin-1 against Thyroid Cancer
Abstract
Although the overall survival rate of papillary or follicular thyroid cancers is good, anaplastic carcinomas and radio iodine refractory cancers remain a significant therapeutic challenge. Galectin-1 (Gal-1) is overexpressed in tumor cells and tumor-associated endothelial cells, and is broadly implicated in angiogenesis, cancer cell motility and invasion, and immune system escape. Our team has previously demonstrated a higher serum level of Gal-1 in patients with differentiated thyroid cancers versus healthy patients, and explored, by a knockdown strategy, the effect of Gal-1 silencing on cell proliferation and invasion in vitro, and on tumor and metastasis development in vivo. OTX008 is a calixarene derivative designed to bind the Gal-1 amphipathic β-sheet conformation and has previously demonstrated anti-proliferative and anti-invasive properties in several cancer cell lines including colon, breast, head and neck, and prostate cancer lines. In the current work, the impacts of OTX008 were evaluated in six thyroid cancer cell lines, and significant inhibitions of proliferation, migration, and invasion were observed in all lines expressing high Gal-1 levels. In addition, the signaling pathways affected by this drug were examined using RPPA (reverse phase protein array) and phosphoprotein expression assays, and opposite regulation of eNos, PYK2, and HSP27 by OTX008 was detected by comparing the two anaplastic lines 8505c and CAL 62. Finally, the sensitive 8505c line was xenografted in nude mice, and 3 weeks of OTX008 treatment (5 mg/kg/day) demonstrated a significant reduction in tumor and lung metastasize sizes without side effects. Overall, OXT008 showed significant anti-cancer effects both in vitro and in vivo in thyroid cancer lines expressing Gal-1, supporting further investigation of the molecular mechanisms of the drug and future clinical trials in patients with anaplastic thyroid cancer.
Keywords