PLoS ONE (Apr 2010)
Development of hepatitis C virus genotyping by real-time PCR based on the NS5B region.
Abstract
BackgroundHepatitis C virus (HCV) genotyping is the most significant predictor of the response to antiviral therapy. The aim of this study was to develop and evaluate a novel real-time PCR method for HCV genotyping based on the NS5B region.Methodology/principal findingsTwo triplex reaction sets were designed, one to detect genotypes 1a, 1b and 3a; and another to detect genotypes 2a, 2b, and 2c. This approach had an overall sensitivity of 97.0%, detecting 295 of the 304 tested samples. All samples genotyped by real-time PCR had the same type that was assigned using LiPA version 1 (Line in Probe Assay). Although LiPA v. 1 was not able to subtype 68 of the 295 samples (23.0%) and rendered different subtype results from those assigned by real-time PCR for 12/295 samples (4.0%), NS5B sequencing and real-time PCR results agreed in all 146 tested cases. Analytical sensitivity of the real-time PCR assay was determined by end-point dilution of the 5000 IU/ml member of the OptiQuant HCV RNA panel. The lower limit of detection was estimated to be 125 IU/ml for genotype 3a, 250 IU/ml for genotypes 1b and 2b, and 500 IU/ml for genotype 1a.Conclusions/significanceThe total time required for performing this assay was two hours, compared to four hours required for LiPA v. 1 after PCR-amplification. Furthermore, the estimated reaction cost was nine times lower than that of available commercial methods in Brazil. Thus, we have developed an efficient, feasible, and affordable method for HCV genotype identification.