Инфекция и иммунитет (Nov 2020)

The role of infectious agent in development of tooth decay

  • A. V. Liubimova,
  • T. V. Brodina,
  • A. E. Goncharov,
  • A. V. Silin,
  • L. P. Zueva,
  • E. A. Klimova,
  • L. V. Belova

DOI
https://doi.org/10.15789/2220-7619-TRO-1138
Journal volume & issue
Vol. 10, no. 4
pp. 747 – 754

Abstract

Read online

Aim: to assess the relationship between colonization of the oral cavity with S. mutans and different genotypic characteristics and the degree of tooth decay in children.Materials and methods. 274 children aged 5 to 17 years (153 girls and 121 boys) who received a preventive dental checkup were included in the study. The dental caries experience was assessed by the DMFT index (number of decayed, missing due to caries, and filled teeth), according to WHO recommendations. The plaque was collected with sterile wooden toothpicks from the buccal gingival margin or from fissures of the first molars and placed in 1.5 mL Eppendorf tubes, and then plated on Mitis Salivarius Agar medium (HiMedia, India). 481 strains of S. mutans were selected for further study. DNA was extracted by an express method. Amplification was performed in the CFX-96 thermal cycler (Bio-Rad, USA). Serotyping was performed by multiplex PCR. PCR products were analyzed by gel electrophoresis in 1.5% agarose gel with ethidium bromide (10 mg/mL) manufactured by Helicon, Moscow, and visualized in UV light in transilluminator UVT1 by Biokom. Genotyping was performed according to the methodology (Saarela et al., 1996) with the oligonucleotide primer OPA-02 (5’-TGCCGAGCTG-3’). Strains of S. mutans were studied for the presence of the following genes: gtfB, spaP, cnm, fruA, gtfB, htrA, comE, mutA x(I), mutA (II), mutA (III), nlmAB (IV), adcA, Smu.399, Smu.583, Smu.761, Smu.940c, Smu.1449, Smu.2130.Results. S. mutans was isolated from all the examined children. Dental decay was detected in 82.4% of the children. Among the strains studied, all 4 serotypes were found: in children with a DMFT = 0 only serotypes k and f were detected; the predominant serotype in children with tooth decay was serotype c (74.7%). 19 genotypes of S. mutans were identified. In children without caries (DMFT = 0), S. mutans did not contain the genes spaP, comE, adcA, Smu.2130, Smu.1449, gtfB, htrA. With the increase in the DMFT index, the frequency of their detection increased. 9 genotypes of S. mutans had all 7 virulence factors. In 94.9% of children colonized by these “virulent” genotypes, high DMFT index scores were observed.Conclusion. The data obtained indicate that only a limited number of specific strains have a cariogenic potential. Strains of S. mutans belonging to serotypes e and c with a combination of virulence genes spaP, gtfB, comE, adcA, Smu.2130, Smu.1449, and htrA were isolated from children with tooth decay. Strains without these factors did not cause any damage to the teeth. The degree of tooth decay increases with colonization by several genotypes with the combination of virulence factors described above.

Keywords