Results in Physics (Sep 2018)

A solid polymer electrolyte for aluminum ion conduction

  • Tianyi Yao,
  • Francielli S. Genier,
  • Saeid Biria,
  • Ian D. Hosein

Journal volume & issue
Vol. 10
pp. 529 – 531

Abstract

Read online

We report on the synthesis and characterization of a solid polymer electrolyte for aluminum ion conduction. The solid polymer electrolyte is produced via the copolymerization of a low molecular weight polytetrahydrofuran and a cycloaliphatic epoxy. The crosslinked copolymer is swollen in THF solutions of different concentrations of aluminum nitrate as the aluminum ion source. The conductivity as a function of concentration is measured via AC impedance spectroscopy over a temperature range of 20–110 °C. We attain conductivities that increase with salt loading, reaching a value of 2.86 × 10−5 S·cm−1. Thermogravimetric analysis shows the electrolytes are stable up to 150 °C. Raman spectroscopy reveals complete dissociation of the aluminum nitrate salt in the electrolyte over the concentration range explored. This study establishes a polymer system and synthetic route towards solid polymer electrolytes for aluminum ion conduction, for the development of all solid-state aluminum ion batteries. Keywords: Polymers, Electrolyte, Aluminum, Ion conduction