Nonlinear Analysis (Oct 2005)
Fixed Point in Minimal Spaces
Abstract
This paper deals with fixed point theory and fixed point property in minimal spaces. We will prove that under some conditions f : (X,M) → (X,M) has a fixed point if and only if for each m-open cover {Bα} for X there is at least one x ∈ X such that both x and f(x) belong to a common Bα. Further, it is shown that if (X,M) has the fixed point property, then its minimal retract subset enjoys this property.
Keywords