AIMS Mathematics (Dec 2024)

Schur-type inequality for solitonic hypersurfaces in $ (k, \mu) $-contact metric manifolds

  • Mohd Danish Siddiqi,
  • Fatemah Mofarreh

DOI
https://doi.org/10.3934/math.20241711
Journal volume & issue
Vol. 9, no. 12
pp. 36069 – 36081

Abstract

Read online

In this article, we derive a Schur-type Inequality in terms of the gradient $ r $-Almost Newton-Ricci-Yamabe soliton in $ (k, \mu) $-contact metric manifolds. We discuss the triviality for the compact gradient $ r $-Almost Newton-Ricci-Yamabe soliton in $ (k, \mu) $-Contact metric manifolds. In the end, we deduce a Schur-type inequality for the gradient $ r $-Almost Newton-Yamabe soliton in $ (k, \mu) $-contact metric manifolds, static Riemannian manifolds, and normal homogeneous compact Riemannian manifolds coupled with a projected Casimir operator.

Keywords