Electrochem (Jun 2021)

Synergistic Effect of Polymorphs in Doped NaNi<sub>0.5</sub>Mn<sub>0.5</sub>O<sub>2</sub> Cathode Material for Improving Electrochemical Performances in Na-Batteries

  • Francesco Leccardi,
  • Davide Nodari,
  • Daniele Spada,
  • Marco Ambrosetti,
  • Marcella Bini

DOI
https://doi.org/10.3390/electrochem2020024
Journal volume & issue
Vol. 2, no. 2
pp. 335 – 346

Abstract

Read online

Layered NaNi0.5Mn0.5O2, employed as cathode materials in sodium ion batteries, is attracting interest due to its high working potential and high-capacity values, thanks to the big sodium amount hosted in the lattice. Many issues are, however, related to their use, particularly, the complex phase transitions occurring during sodium intercalation/deintercalation, detrimental for the structure stability, and the possible Mn dissolution into the electrolyte. In this paper, the doping with Ti, V, and Cu ions (10% atoms with respect to Ni/Mn amount) was used to stabilize different polymorphs or mixtures of them with the aim to improve the capacity values and cells cyclability. The phases were identified and quantified by means of X-ray powder diffraction with Rietveld structural refinements. Complex voltammograms with broad peaks, due to multiple structural transitions, were disclosed for most of the samples. Ti-doped sample has, in general, the best performances with the highest capacity values (120 mAh/g at C/10), however, at higher currents (1C), Cu-substituted sample also has stable and comparable capacity values.

Keywords