Reversed Mg-Based Smectites: A New Approach for CO<sub>2</sub> Adsorption
Francisco Franco,
Juan Antonio Cecilia,
Laura Pardo,
Salima Essih,
Manuel Pozo,
Lucía dos Santos-Gómez,
Rosario M. P. Colodrero
Affiliations
Francisco Franco
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain
Juan Antonio Cecilia
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain
Laura Pardo
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain
Salima Essih
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain
Manuel Pozo
Departamento de Geología y Geoquímica, Facultad de Ciencias, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Lucía dos Santos-Gómez
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain
Rosario M. P. Colodrero
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain
Addressing climate change requires transitioning to cleaner energy sources and adopting advanced CO2 capture techniques. Clay minerals are effective in CO2 adsorption due to their regenerative properties. Recent advancements in nanotechnology further improve their efficiency and potential for use in carbon capture and storage. This study examines the CO2 adsorption properties of montmorillonite and saponite, which are subjected to a novel microwave-assisted acid treatment to enhance their adsorption capacity. While montmorillonite shows minimal changes, saponite undergoes significant alterations. Furthermore, the addition of silica pillars to smectites results in a new nanomaterial with a higher surface area (653 m2 g−1), denoted as reversed smectite, with enhanced CO2 adsorption capabilities, potentially useful for electrochemical devices for converting captured CO2 into value-added products.