Metals (Aug 2021)

Effects of Zr Content on the Microstructure and Performance of TiMoNbZr<sub>x</sub> High-Entropy Alloys

  • Gengbiao Chen,
  • Yi Xiao,
  • Xixi Ji,
  • Xiubing Liang,
  • Yongle Hu,
  • Zhihai Cai,
  • Jian Liu,
  • Yonggang Tong

DOI
https://doi.org/10.3390/met11081315
Journal volume & issue
Vol. 11, no. 8
p. 1315

Abstract

Read online

TiMoNbZrx refractory high-entropy alloys were prepared by vacuum arc melting, and the influence of the Zr alloying element and its content on the phases, microstructure, mechanical properties, and wear resistance of TiMoNbZrx alloys was explored. It was found that the alloys after Zr addition were composed of a single BCC phase. Upon increasing the Zr content, the grain size of the as-cast alloy decreased first and then increased, and TiMoNbZr0.5 exhibited the smallest grain size. Adding an appropriate amount of Zr increased the strength and hardness of the alloys. TiMoNbZr0.5 exhibited the best wear resistance, with a friction coefficient of about 0.33. It also displayed the widest wear scar, the shallowest depth, and the greatest degree of wear on the grinding ball because of the formation of an oxide film during wear.

Keywords