Journal of Petroleum Exploration and Production Technology (Oct 2019)

A simple NMR methodology for evaluating filter cake properties and drilling fluid-induced formation damage

  • Abdulrauf R. Adebayo,
  • Badr S. Bageri

DOI
https://doi.org/10.1007/s13202-019-00786-3
Journal volume & issue
Vol. 10, no. 4
pp. 1643 – 1655

Abstract

Read online

Abstract An efficient drilling fluid will form a filter cake that will minimize the drilling fluid invasion into any drilled formation. Drilling fluid must therefore be adequately evaluated in the laboratory prior to field trial. Filter cake properties such as thickness, porosity, permeability, and pore structure are frequently evaluated using several techniques such as CT scan, SEM, and XRF. However, each of these techniques can evaluate only one or two filter cake properties. This paper presents a simple but novel NMR technique to evaluate filter cake properties such as thickness, pore volume, porosity, and possibly permeability. Furthermore, the amount and particle size distribution of solids that invaded a given rock sample can be obtained using the same technique. The full procedure was tested and verified using four identical rock samples. Drilling fluid invasion and filter cake deposition experiments were conducted on each of the samples, using the same drilling fluid but four different concentrations of fluid loss additive. NMR T 2 relaxation measurements were taken at three different stages of each rock sample: before filter cake deposition; after fluid invasion and filter cake deposition; and after filter cake removal. A material balance analysis of the probability density function and cumulative distribution function of the measured T 2 profile at the different stages of each sample yielded multiple filtration loss properties of the filter cake. The results obtained showed high accuracy of the NMR versus the current techniques. Moreover, this current method evaluated the majority of the filter cake properties at the same time and in situ hence eliminated the need of using multi-procedures that disturb the sample state. Finally, the presented method can also be used to evaluate secondary damage associated with filter cake removal process.

Keywords