Insights into Imaging (Aug 2022)
An updated systematic review of radiomics in osteosarcoma: utilizing CLAIM to adapt the increasing trend of deep learning application in radiomics
Abstract
Abstract Objective To update the systematic review of radiomics in osteosarcoma. Methods PubMed, Embase, Web of Science, China National Knowledge Infrastructure, and Wanfang Data were searched to identify articles on osteosarcoma radiomics until May 15, 2022. The studies were assessed by Radiomics Quality Score (RQS), Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement, Checklist for Artificial Intelligence in Medical Imaging (CLAIM), and modified Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. The evidence supporting radiomics application for osteosarcoma was rated according to meta-analysis results. Results Twenty-nine articles were included. The average of the ideal percentage of RQS, the TRIPOD adherence rate and the CLAIM adherence rate were 29.2%, 59.2%, and 63.7%, respectively. RQS identified a radiomics-specific issue of phantom study. TRIPOD addressed deficiency in blindness of assessment. CLAIM and TRIPOD both pointed out shortness in missing data handling and sample size or power calculation. CLAIM identified extra disadvantages in data de-identification and failure analysis. External validation and open science were emphasized by all the above three tools. The risk of bias and applicability concerns were mainly related to the index test. The meta-analysis of radiomics predicting neoadjuvant chemotherapy response by MRI presented a diagnostic odds ratio (95% confidence interval) of 28.83 (10.27–80.95) on testing datasets and was rated as weak evidence. Conclusions The quality of osteosarcoma radiomics studies is insufficient. More investigation is needed before using radiomics to optimize osteosarcoma treatment. CLAIM is recommended to guide the design and reporting of radiomics research.
Keywords