Frontiers in Neuroscience (Aug 2021)

Vagus Nerve Stimulation Induced Motor Map Plasticity Does Not Require Cortical Dopamine

  • Jackson Brougher,
  • Camilo A. Sanchez,
  • Umaymah S. Aziz,
  • Kiree F. Gove,
  • Catherine A. Thorn

DOI
https://doi.org/10.3389/fnins.2021.693140
Journal volume & issue
Vol. 15

Abstract

Read online

Background: Vagus nerve stimulation (VNS) paired with motor rehabilitation is an emerging therapeutic strategy to enhance functional recovery after neural injuries such as stroke. Training-paired VNS drives significant neuroplasticity within the motor cortex (M1), which is thought to underlie the therapeutic effects of VNS. Though the mechanisms are not fully understood, VNS-induced cortical plasticity is known to depend on intact signaling from multiple neuromodulatory nuclei that innervate M1. Cortical dopamine (DA) plays a key role in mediating M1 synaptic plasticity and is critical for motor skill acquisition, but whether cortical DA contributes to VNS efficacy has not been tested.Objective: To determine the impact of cortical DA depletion on VNS-induced cortical plasticity.Methods: Rats were trained on a skilled reaching lever press task prior to implantation of VNS electrodes and 6-hydroxydopamine (6-OHDA) mediated DA depletion in M1. Rats then underwent training-paired VNS treatment, followed by cortical motor mapping and lesion validation.Results: In both intact and DA-depleted rats, VNS significantly increased the motor map representation of task-relevant proximal forelimb musculature and reduced task-irrelevant distal forelimb representations. VNS also significantly increased tyrosine hydroxylase (TH+) fiber density in intact M1, but this effect was not observed in lesioned hemispheres.Conclusion: Our results reveal that though VNS likely upregulates catecholaminergic signaling in intact motor cortices, DA itself is not required for VNS-induced plasticity to occur. As DA is known to critically support M1 plasticity during skill acquisition, our findings suggest that VNS may engage a unique set of neuromodulatory signaling pathways to promote neocortical plasticity.

Keywords