ESAIM: Proceedings and Surveys (Jan 2019)
Free boundary value problems and hjb equations for the stochastic optimal control of elasto-plastic oscillators
Abstract
We consider the optimal stopping and optimal control problems related to stochastic variational inequalities modeling elasto-plastic oscillators subject to random forcing. We formally derive the corresponding free boundary value problems and Hamilton-Jacobi-Bellman equations which belong to a class of nonlinear partial of differential equations with nonlocal Dirichlet boundary conditions. Then, we focus on solving numerically these equations by employing a combination of Howard’s algorithm and the numerical approach [A backward Kolmogorov equation approach to compute means, moments and correlations of non-smooth stochastic dynamical systems; Mertz, Stadler, Wylie; 2017] for this type of boundary conditions. Numerical experiments are given.