Metformin and simvastatin exert additive antitumour effects in glioblastoma via senescence-state: clinical and translational evidenceResearch in context
Antonio C. Fuentes-Fayos,
Miguel E. G-García,
Jesús M. Pérez-Gómez,
Antonio J. Montero-Hidalgo,
Julia Martín-Colom,
Carlos Doval-Rosa,
Cristóbal Blanco-Acevedo,
Encarnación Torres,
Álvaro Toledano-Delgado,
Rafael Sánchez-Sánchez,
Esther Peralbo-Santaella,
Rosa M. Ortega-Salas,
Juan M. Jiménez-Vacas,
Manuel Tena-Sempere,
Miguel López,
Justo P. Castaño,
Manuel D. Gahete,
Juan Solivera,
Raúl M. Luque
Affiliations
Antonio C. Fuentes-Fayos
Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain; Corresponding author. Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Menéndez Pidal s/n, third floor, E-14004, Cordoba, Spain.
Miguel E. G-García
Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
Jesús M. Pérez-Gómez
Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
Antonio J. Montero-Hidalgo
Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
Julia Martín-Colom
Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
Carlos Doval-Rosa
Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
Cristóbal Blanco-Acevedo
Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
Encarnación Torres
Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
Álvaro Toledano-Delgado
Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
Rafael Sánchez-Sánchez
Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Pathology Service, Reina Sofia University Hospital, 14004, Cordoba, Spain
Esther Peralbo-Santaella
Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Flow Cytometry Unit, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004, Cordoba, Spain
Rosa M. Ortega-Salas
Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Pathology Service, Reina Sofia University Hospital, 14004, Cordoba, Spain
Juan M. Jiménez-Vacas
Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
Manuel Tena-Sempere
Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
Miguel López
CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain; NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
Justo P. Castaño
Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
Manuel D. Gahete
Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
Juan Solivera
Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
Raúl M. Luque
Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain; Corresponding author. Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Menéndez Pidal s/n, third floor, E-14004, Cordoba, Spain.
Summary: Background: Glioblastoma is one of the most devastating and incurable cancers due to its aggressive behaviour and lack of available therapies, being its overall-survival from diagnosis ∼14-months. Thus, identification of new therapeutic tools is urgently needed. Interestingly, metabolism-related drugs (e.g., metformin/statins) are emerging as efficient antitumour agents for several cancers. Herein, we evaluated the in vitro/in vivo effects of metformin and/or statins on key clinical/functional/molecular/signalling parameters in glioblastoma patients/cells. Methods: An exploratory-observational-randomized retrospective glioblastoma patient cohort (n = 85), human glioblastoma/non-tumour brain human cells (cell lines/patient-derived cell cultures), mouse astrocytes progenitor cell cultures, and a preclinical xenograft glioblastoma mouse model were used to measure key functional parameters, signalling-pathways and/or antitumour progression in response to metformin and/or simvastatin. Findings: Metformin and simvastatin exerted strong antitumour actions in glioblastoma cell cultures (i.e., proliferation/migration/tumoursphere/colony-formation/VEGF-secretion inhibition and apoptosis/senescence induction). Notably, their combination additively altered these functional parameters vs. individual treatments. These actions were mediated by the modulation of key oncogenic signalling-pathways (i.e., AKT/JAK-STAT/NF-κB/TGFβ-pathways). Interestingly, an enrichment analysis uncovered a TGFβ-pathway activation, together with AKT inactivation, in response to metformin + simvastatin combination, which might be linked to an induction of the senescence-state, the associated secretory-phenotype, and to the dysregulation of spliceosome components. Remarkably, the antitumour actions of metformin + simvastatin combination were also observed in vivo [i.e., association with longer overall-survival in human, and reduction in tumour-progression in a mouse model (reduced tumour-size/weight/mitosis-number, and increased apoptosis)]. Interpretation: Altogether, metformin and simvastatin reduce aggressiveness features in glioblastomas, being this effect significantly more effective (in vitro/in vivo) when both drugs are combined, offering a clinically relevant opportunity that should be tested for their use in humans. Funding: Spanish Ministry of Science, Innovation and Universities; Junta de Andalucía; CIBERobn (CIBER is an initiative of Instituto de Salud Carlos III, Spanish Ministry of Health, Social Services and Equality).