African Scientific Reports (Apr 2023)
Factorization in Phase-Space Finite Geometry and Weak Mutually Unbiased Bases
Abstract
A phase-space factorization of lines in finite geometry G(m) with variables in Zm and its correspondence in finite Hilbert space H(m) for m a non-prime was discussed. Using the method of Good [15], lines in G(m) were factorized as products of lines G(mi) where mi is a prime divisor of m. A lattice was formed between the non trivial sublines of G(m) and lines of G(mi) and between a subspace of H(m) and bases of H(mi) and existence of a link between lines in phase space finite geometry and bases in Hilbert space of finite quantum systems was discussed.
Keywords