Applied Sciences (Sep 2021)
An Empirical Study of a Trustworthy Cloud Common Data Model Using Decentralized Identifiers
Abstract
The Conventional Cloud Common Data Model (CDM) uses a centralized method of user identification and credentials. This needs to be solved in a decentralized way because there are limitations in interoperability such as closed identity management and identity leakage. In this paper, we propose a DID (Decentralized Identifier)-based cloud CDM that allows researchers to securely store medical research information by authenticating their identity and to access the CDM reliably. The proposed service model is used to provide the credential of the researcher in the process of creating and accessing CDM data in the designed secure cloud. This model is designed on a DID-based user-centric identification system to support the research of enrolled researchers in a cloud CDM environment involving multiple hospitals and laboratories. The prototype of the designed model is an extension of the encrypted CDM delivery method using DID and provides an identification system by limiting the use cases of CDM data by researchers registered in cloud CDM. Prototypes built for agent-based proof of concept (PoC) are leveraged to enhance security for researcher use of ophthalmic CDM data. For this, the CDM ID schema and ID definition are described by issuing IDs of CDM providers and CDM agents, limiting the IDs of researchers who are CDM users. The proposed method is to provide a framework for integrated and efficient data access control policy management. It provides strong security and ensures both the integrity and availability of CDM data.
Keywords