Deciphering the Molecular Interaction Process of Gallium Maltolate on SARS-CoV-2 Main and Papain-Like Proteases: A Theoretical Study
Kevin Taype-Huanca,
Manuel I. Osorio,
Diego Inostroza,
Luis Leyva-Parra,
Lina Ruíz,
Ana Valderrama-Negrón,
Jesús Alvarado-Huayhuaz,
Osvaldo Yañez,
William Tiznado
Affiliations
Kevin Taype-Huanca
Laboratorio de Investigación en Biopolímeros y Metalofármacos (LIBIPMET), Facultad de Ciencias, Universidad Nacional de Ingeniería, Lima 150128, Peru
Manuel I. Osorio
Facultad de Odontología, Universidad Andres Bello, Santiago Chile, Echaurren 237, Santiago 8370133, Chile
Diego Inostroza
Centro de Química Teórica & Computacional (CQT&C), Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Avenida República 275, Santiago 8370146, Chile
Luis Leyva-Parra
Centro de Química Teórica & Computacional (CQT&C), Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Avenida República 275, Santiago 8370146, Chile
Lina Ruíz
Centro de Investigación Biomédica, Universidad Autónoma de Chile, Santiago 7500912, Chile
Ana Valderrama-Negrón
Laboratorio de Investigación en Biopolímeros y Metalofármacos (LIBIPMET), Facultad de Ciencias, Universidad Nacional de Ingeniería, Lima 150128, Peru
Jesús Alvarado-Huayhuaz
Laboratorio de Investigación en Biopolímeros y Metalofármacos (LIBIPMET), Facultad de Ciencias, Universidad Nacional de Ingeniería, Lima 150128, Peru
Osvaldo Yañez
Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago 7500000, Chile
William Tiznado
Centro de Química Teórica & Computacional (CQT&C), Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Avenida República 275, Santiago 8370146, Chile
This study explored the inhibitory potential of gallium maltolate against severe acute respiratory syndrome coronavirus 2 and main and papain-like proteases. Computational methods, including density functional theory and molecular docking, were used to assess gallium maltolate reactivity and binding interactions. Density functional theory calculations revealed gallium maltolate’s high electron-capturing capacity, particularly around the gallium metal atom, which may contribute to their activity. Molecular docking demonstrated that gallium maltolate can form strong hydrogen bonds with key amino acid residues like glutamate-166 and cysteine-145, tightly binding to main and papain-like proteases. The binding energy and interactions of gallium maltolate were comparable to known SARS-CoV-2 inhibitors like N-[(5-methyl-1,2-oxazol-3-yl)carbonyl]-L-alanyl-L-valyl-N-{(2S,3E)-5-(benzyloxy)-5-oxo-1-[(3S)-2-oxopyrrolidin-3-yl]pent-3-en-2-yl}-L-leucinamide, indicating its potential as an antiviral agent. However, further experimental validation is required to confirm its effectiveness in inhibiting SARS-CoV-2 replication and treating COVID-19.