Cells (Oct 2024)

Novel TSPO Ligand 2-Cl-MGV-1 Can Counteract Lipopolysaccharide Induced Inflammatory Response in Murine RAW264.7 Macrophage Cell Line and Lung Models

  • Fadi Obeid,
  • Meygal Kahana,
  • Baraah Dahle,
  • Sheelu Monga,
  • Yaniv Zohar,
  • Abraham Weizman,
  • Moshe Gavish

DOI
https://doi.org/10.3390/cells13201702
Journal volume & issue
Vol. 13, no. 20
p. 1702

Abstract

Read online

We assessed the anti-inflammatory activity of the TSPO ligand 2-Cl-MGV-1. Lipopolysaccharide (LPS) was used to induce inflammatory response in a murine RAW264.7 macrophage model (LPS: 100 ng/mL) and a mouse model (C57BL/6) of lung inflammation (LPS: 5 mg/kg). In the macrophage model, the presence of 2-Cl-MGV-1 (25 µM) caused the LPS-induced elevation in nitrite levels to decrease by 70% (p p p p p p p p < 0.05) when administered 1 h after LPS. All cytokine assessments were conducted 6 h post LPS injection. Histological analyses showed decreased leukocyte adherence in the lung tissue of the ligand-treated mice. 2-Cl-MGV-1 administration 30 min prior to exposure to LPS inhibited inflammation-induced open field immobility. The beneficial effect of 2-Cl-MGV-1 suggests its potential as a therapeutic option for inflammatory diseases.

Keywords