Frontiers in Chemistry (Apr 2021)
Core-Shell Structured PtxMoy@TiO2 Nanoparticles Synthesized by Reverse Microemulsion for Methanol Electrooxidation of Fuel Cells
Abstract
The high price of catalyst and poor durability still restrict the development of fuel cells. In this work, core-shell structured PtxMoy@TiO2 nanoparticles with low Pt content are prepared by a reverse microemulsion method. The morphologies, particle size, structure, and composition of PtxMoy@TiO2 nanoparticles are examined by several techniques such as X-ray Diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy, etc. The PtxMoy@TiO2 electrocatalysts show significantly higher catalytic activity and better durability for methanol oxidation than the commercial Pt/C (ETEK). Compared to Pt/C catalyst, the enhancement of the electrochemical performance of PtxMoy@TiO2 electrocatalysts can be attributed to the core-shell structure and the shift of the d-band center of Pt atoms, which can weaken the adsorption strength toward CO molecules, facilitate the removal of the CO groups and improve electrocatalytic activity. The development of PtxMoy@TiO2 electrocatalysts is promising to reduce the use of noble metal Pt and has a great potential for application in fuel cells.
Keywords