Fractal and Fractional (Jan 2024)
On the Impacts of the Global Sea Level Dynamics
Abstract
The temporal evolution of the global mean sea level (GMSL) is investigated in the present analysis using the monthly mean values obtained from two sources: a reconstructed dataset and a satellite altimeter dataset. To this end, we use two well-known techniques, detrended fluctuation analysis (DFA) and multifractal DFA (MF-DFA), to study the scaling properties of the time series considered. The main result is that power-law long-range correlations and multifractality apply to both data sets of the global mean sea level. In addition, the analysis revealed nearly identical scaling features for both the 134-year and the last 28-year GMSL-time series, possibly suggesting that the long-range correlations stem more from natural causes. This demonstrates that the relationship between climate change and sea-level anomalies needs more extensive research in the future due to the importance of their indirect processes for ecology and conservation.
Keywords