Realizing Plain Optimization of the Thermoelectric Properties in BiCuSeO Oxide via Self-Substitution-Induced Lattice Dislocations
Rui Xu,
Zhiwei Chen,
Qizhu Li,
Xiaoyu Yang,
Han Wan,
Mengruizhe Kong,
Wei Bai,
Nengyuan Zhu,
Ruohan Wang,
Jiming Song,
Zhou Li,
Chong Xiao,
Binghui Ge
Affiliations
Rui Xu
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and School of Materials Science and Engineering, Anhui University, Hefei 230601, China.
Zhiwei Chen
School of Materials Science and Engineering,
Tongji University, Shanghai 201804, China.
Qizhu Li
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and School of Materials Science and Engineering, Anhui University, Hefei 230601, China.
Xiaoyu Yang
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and School of Materials Science and Engineering, Anhui University, Hefei 230601, China.
Han Wan
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and School of Materials Science and Engineering, Anhui University, Hefei 230601, China.
Mengruizhe Kong
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230026, China.
Wei Bai
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230026, China.
Nengyuan Zhu
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and School of Materials Science and Engineering, Anhui University, Hefei 230601, China.
Ruohan Wang
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and School of Materials Science and Engineering, Anhui University, Hefei 230601, China.
Jiming Song
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and School of Materials Science and Engineering, Anhui University, Hefei 230601, China.
Zhou Li
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and School of Materials Science and Engineering, Anhui University, Hefei 230601, China.
Chong Xiao
Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China.
Binghui Ge
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and School of Materials Science and Engineering, Anhui University, Hefei 230601, China.
Seeking new strategies to tune the intrinsic defect and optimize the thermoelectric performance via no or less use of external doped elements (i.e., plain optimization) is an important method to realize the sustainable development of thermoelectric materials. Meanwhile, creating dislocation defects in oxide systems is quite challenging because the rigid and stiff ionic/covalent bonds can hardly tolerate the large strain energy associated with dislocations. Herein, taking BiCuSeO oxide as an example, the present work reports a successful construction of dense lattice dislocations in BiCuSeO by self-doping of Se at the O site (i.e., SeO self-substitution), and achieves plain optimization of the thermoelectric properties with only external Pb doping. Owing to the self-substitution-induced large lattice distortion and the potential reinforcement effect by Pb doping, high-density (about 3.0 × 1014 m−2) dislocations form in the grains, which enhances the scattering strength of mid-frequency phonon and results in a substantial low lattice thermal conductivity of 0.38 W m−1 K−1 at 823 K in Pb-doped BiCuSeO. Meanwhile, PbBi doping and Cu vacancy markedly improve the electrical conductivity while maintaining a competitively high Seebeck coefficient, thereby contributing to a highest power factor of 942 μW m−1 K−2. Finally, a remarkably enhanced zT value of 1.32 is obtained at 823 K in Bi0.94Pb0.06Cu0.97Se1.05O0.95 with almost compositional plainification. The high-density dislocation structure reported in this work will also provide a good inspiration for the design and construction of dislocations in other oxide systems.