Muscle stem cells (MuSCs) isolated ex vivo are essential original cells to produce cultured meat. Currently, one of the main obstacles for cultured meat production derives from the limited capacity of large-scale amplification of MuSCs, especially under high-density culture condition. Here, we show that at higher cell densities, proliferation and differentiation capacities of porcine MuSCs are impaired. We investigate the roles of Hippo-YAP signaling, which is important regulators in response to cell contact inhibition. Interestingly, abundant but not functional YAP proteins are accumulated in MuSCs seeded at high density. When treated with lysophosphatidic acid (LPA), the activator of YAP, porcine MuSCs exhibit increased proliferation and elevated differentiation potential compared with control cells. Moreover, constitutively active YAP with deactivated phosphorylation sites, but not intact YAP, promotes cell proliferation and stemness maintenance of MuSCs. Together, we reveal a potential molecular target that enables massive MuSCs expansion for large-scale cultured meat production under high-density condition.