Translational Neuroscience (Jan 2015)

Effect of connexin 36 blockers on the neuronal cytoskeleton and synaptic plasticity in kainic acid-kindled rats

  • Wu Xue-mei,
  • Wang Guang-liang,
  • Miao Jing,
  • Feng Jia-chun

DOI
https://doi.org/10.1515/tnsci-2015-0027
Journal volume & issue
Vol. 6, no. 1
pp. 252 – 258

Abstract

Read online

In this study we investigated the potential anti-epileptogenic effect of neuronal connexin Cx36 gap junction blockage via inhibition of microtubule-associated protein 2 (MAP-2) and synaptophysin (SYP) overexpression. Thirty adult male Wistar rats were divided into five groups (six animals per group): control, sham, carbenoxolone (CBX), quinine (QN), and quinidine (QND). An epilepsy model was produced by injecting kainic acid (KA) into the rat amygdala. Broad-spectrum and selective blockers of the Cx36 channel (CBX, QN, and QND) were administered via intraperitoneal injection. Expression of MAP-2 and SYP was assessed by immunofluorescent and immunohistochemical examination. Expression of MAP-2 and SYP was significantly increased after KA administration in the sham group compared with the control group. Expression of MAP-2 and SYP was significantly decreased in the CBX, QN, and QND groups compared with the sham group. The results provide new evidence regarding the key role of MAP-2 and SYP overexpression in three important mechanisms: the modulation of neuronal plasticity, hyperexcitability of the hippocampal neuronal network, and persistent seizure discharge. Furthermore, the reversal of MAP-2 and SYP overexpression following administration of Cx36 channel blockers indicates a potential role for Cx36 channel blockers in anti-epileptogenic treatment and in doing so, highlights a critical need for further investigation of these compounds.

Keywords