Cleaner Chemical Engineering (Dec 2023)
Recent advances, challenges, and prospects of electrochemical water-splitting technologies for net-zero transition
Abstract
This review paper presents state-of-the-art electrolytic-based hydrogen production technologies capable of helping to achieve the “net-zero” targets. It covers the recent advances in electrochemical water-splitting technologies, considering their maturity, durability, and operational aspects related to their near-term deployment. This paper aims to critically assess electrochemical technologies compatible with renewables, nuclear, or other clean energy sources with a high potential to be applied for green hydrogen production at scale. It also discusses the techno-economic aspects as well as the technological readiness of the potential carbon-free hydrogen production routes based on electrochemical approaches. With a comprehensive survey of the recent literature and extensive insight into current developments, the issues associated with deploying the electrolytic water splitting technologies are discussed, along with a review of their market readiness level to play a potential role in the transition journey from fossil fuel-based-economy into hydrogen-driven energy infrastructure. In addition, the paper provides insight into the legal strategies and the governmental incentives required to reach the so-called “net-zero” emission plans globally to enable green hydrogen for deep decarbonization of the industrial, transportation, and residential sectors. Near-term projects to deploy large-scale clean hydrogen production announced globally are also listed with their expected contribution toward the zero-emission targets. The result of this review shows that wind and solar photovoltaic energies, as the two most preferred renewable sources, can be used to drive Proton Exchange Membrane (PEM) and Alkaline Electrolysers (AE) at a cost range of USD 2 - 3 /kg of H2. This figure is expected to decrease by more than 40 % until 2030 if these electrolyzers can be deployed at a large scale.