AIMS Mathematics (Jan 2022)

Supercongruences involving Apéry-like numbers and binomial coefficients

  • Zhi-Hong Sun

DOI
https://doi.org/10.3934/math.2022153
Journal volume & issue
Vol. 7, no. 2
pp. 2729 – 2781

Abstract

Read online

Let $ \{S_n\} $ be the Apéry-like sequence given by $ S_n = \sum_{k = 0}^n\binom nk\binom{2k}k\binom{2n-2k}{n-k} $. We show that for any odd prime $ p $, $ \sum_{n = 1}^{p-1}\frac {nS_n}{8^n}{\equiv} (1-(-1)^{\frac{p-1}2})p^2\ (\text{ mod}\ {p^3}) $. Let $ \{Q_n\} $ be the Apéry-like sequence given by $ Q_n = \sum_{k = 0}^n\binom nk(-8)^{n-k}\sum_{r = 0}^k\binom kr^3 $. We establish many congruences concerning $ Q_n $. For an odd prime $ p $, we also deduce congruences for $ \sum_{k = 0}^{p-1}\binom{2k}k^3\frac 1{64^k}\ (\text{ mod}\ {p^3}) $, $ \sum_{k = 0}^{p-1}\binom{2k}k^3\frac 1{64^k(k+1)^2}\ (\text{ mod}\ {p^2}) $ and $ \sum_{k = 0}^{p-1}\binom{2k}k^3\frac 1{64^k(2k-1)}\ (\text{ mod}\ p) $, and pose lots of conjectures on congruences involving binomial coefficients and Apéry-like numbers.

Keywords