Mathematics (Dec 2023)

OMOFuse: An Optimized Dual-Attention Mechanism Model for Infrared and Visible Image Fusion

  • Jianye Yuan,
  • Song Li

DOI
https://doi.org/10.3390/math11244902
Journal volume & issue
Vol. 11, no. 24
p. 4902

Abstract

Read online

Infrared and visible image fusion aims to fuse the thermal information of infrared images and the texture information of visible images into images that are more in compliance with people’s visual perception characteristics. However, in the existing related work, the fused images have incomplete contextual information and poor fusion results. This paper presents a new image fusion algorithm—OMOFuse. At first, both the channel and spatial attention mechanisms are optimized by a DCA (dual-channel attention) mechanism and an ESA (enhanced spatial attention) mechanism. Then, an ODAM (optimized dual-attention mechanism) module is constructed to further improve the integration effect. Moreover, a MO module is used to improve the network’s feature extraction capability for contextual information. Finally, there is the loss function ℒ from the three parts of SSL (structural similarity loss), PL (perceptual loss), and GL (gap loss). Extensive experiments on three major datasets are performed to demonstrate that OMOFuse outperforms the existing image fusion methods in terms of quantitative determination, qualitative detection, and superior generalization capabilities. Further evidence of the effectiveness of our algorithm in this study are provided.

Keywords