Frontiers in Veterinary Science (Apr 2021)

Climate-Resilient Dairy Cattle Production: Applications of Genomic Tools and Statistical Models

  • Mullakkalparambil Velayudhan Silpa,
  • Mullakkalparambil Velayudhan Silpa,
  • Sven König,
  • Veerasamy Sejian,
  • Pradeep Kumar Malik,
  • Mini Ravi Reshma Nair,
  • Vinicius F. C. Fonseca,
  • Vinicius F. C. Fonseca,
  • Alex Sandro Campos Maia,
  • Raghavendra Bhatta

DOI
https://doi.org/10.3389/fvets.2021.625189
Journal volume & issue
Vol. 8

Abstract

Read online

The current changing climate trend poses a threat to the productive efficacy and welfare of livestock across the globe. This review is an attempt to synthesize information pertaining to the applications of various genomic tools and statistical models that are available to identify climate-resilient dairy cows. The different functional and economical traits which govern milk production play a significant role in determining the cost of milk production. Thus, identification of these traits may revolutionize the breeding programs to develop climate-resilient dairy cattle. Moreover, the genotype–environment interaction also influences the performance of dairy cattle especially during a challenging situation. The recent advancement in molecular biology has led to the development of a few biotechnological tools and statistical models like next-generation sequencing (NGS), microarray technology, whole transcriptome analysis, and genome-wide association studies (GWAS) which can be used to quantify the molecular mechanisms which govern the climate resilience capacity of dairy cows. Among these, the most preferred option for researchers around the globe was GWAS as this approach jointly takes into account all the genotype, phenotype, and pedigree information of farm animals. Furthermore, selection signatures can also help to demarcate functionally important regions in the genome which can be used to detect potential loci and candidate genes that have undergone positive selection in complex milk production traits of dairy cattle. These identified biomarkers can be incorporated in the existing breeding policies using genomic selection to develop climate-resilient dairy cattle.

Keywords