BMC Cancer (Sep 2024)

GLIDR-mediated regulation of tumor malignancy and cisplatin resistance in non-small cell lung cancer via the miR-342-5p/PPARGC1A axis

  • Ruihua Liu,
  • Jiemin Wang,
  • Lichun Zhang,
  • Shu Wang,
  • Xiangnan Li,
  • Yueshi Liu,
  • Haiquan Yu

DOI
https://doi.org/10.1186/s12885-024-12845-y
Journal volume & issue
Vol. 24, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background Lung cancer, particularly non-small cell lung cancer (NSCLC), remains a significant cause of cancer-related mortality, with drug resistance posing a substantial obstacle to effective therapy. LncRNAs have emerged as pivotal regulators of NSCLC progression, suggesting potential targets for cancer diagnosis and treatment. Therefore, identifying new lncRNAs as therapeutic targets and comprehending their underlying regulatory mechanisms are crucial for treating NSCLC. Materials and methods RNA-sequencing data from 149 lung adenocarcinoma (LUAD) patients, including 130 responders and 19 nonresponders to primary treatment, were analyzed to identify the most effective lncRNAs. The effects and regulatory pathways of the selected lncRNAs on NSCLC and cisplatin resistance were investigated. Results Glioblastoma-downregulated RNA (GLIDR) was the most effective lncRNA in nonresponsive NSCLC patients undergoing primary treatment, and it was highly expressed in NSCLC patients and those with cisplatin-resistant NSCLC. Reducing GLIDR expression enhanced cisplatin sensitivity in resistant NSCLC and decreased the malignant characteristics of NSCLC. Moreover, bioinformatic analysis and luciferase assays revealed that microRNA-342-5p (miR-342-5p) directly targets GLIDR. MiR-342-5p overexpression inhibited NSCLC cell proliferation, migration, and invasion, whereas miR-342-5p inhibition promoted NSCLC malignancy, which was rescued by suppressing GLIDR. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PPARGC1A) was identified as a downstream target of miR-342-5p. PPARGC1A inhibition increased cisplatin sensitivity in resistant NSCLC. Moreover, PPARGC1A inhibition suppresses NSCLC malignancy, whereas PPARGC1A overexpression promoted it. Furthermore, GLIDR overexpression was found to counteract the inhibitory effects of miR-342-5p on PPARGC1A, and increased PPARGC1A expression reversed the inhibition of NSCLC malignancies caused by decreased GLIDR. Conclusions GLIDR is a prognostic marker for cisplatin treatment in NSCLC and a therapeutic target in cisplatin-resistant NSCLC. GLIDR promotes NSCLC progression by sponging miR-342-5p to regulate PPARGC1A expression and regulates cisplatin resistance through the miR-342-5p/PPARGC1A axis, underscoring its potential as a therapeutic target in cisplatin-resistant NSCLC.

Keywords