MATEC Web of Conferences (Jan 2016)

Knowledge-Based Energy Damage Model for Evaluating Industrialised Building Systems (IBS) Occupational Health and Safety (OHS) Risk

  • Abas Nor Haslinda,
  • Blismas Nick,
  • Lingard Helen

DOI
https://doi.org/10.1051/matecconf/20164704015
Journal volume & issue
Vol. 47
p. 04015

Abstract

Read online

Malaysia’s construction industry has been long considered hazardous, owing to its poor health and safety record. It is proposed that one of the ways to improve safety and health in the construction industry is through the implementation of ‘off-site’ systems, commonly termed ‘industrialised building systems (IBS)’ in Malaysia. This is deemed safer based on the risk concept of reduced exposure, brought about by the reduction in onsite workers; however, no method yet exists for determining the relative safety of various construction methods, including IBS. This study presents a comparative evaluation of the occupational health and safety (OHS) risk presented by different construction approaches, namely IBS and traditional methods. The evaluation involved developing a model based on the concept of ‘argumentation theory’, which helps construction designers integrate the management of OHS risk into the design process. In addition, an ‘energy damage model’ was used as an underpinning framework. Development of the model was achieved through three phases, namely Phase I – knowledge acquisitaion, Phase II – argument trees mapping, and Phase III – validation of the model. The research revealed that different approaches/methods of construction projects carried a different level of energy damage, depending on how the activities were carried out. A study of the way in which the risks change from one construction process to another shows that there is a difference in the profile of OHS risk between IBS construction and traditional methods.Therefore, whether the option is an IBS or traditional approach, the fundamental idea of the model is to motivate construction designers or decision-makers to address safety in the design process and encourage them to examine carefully the probable OHS risk variables surrounding an action, thus preventing accidents in construction.