Scientific Reports (Mar 2024)

Evaluation of the complexation behaviour among functionalized diphenyl viologens and cucurbit[7] and [8]urils

  • Bebin Ambrose,
  • Gopal Sathyaraj,
  • Murugavel Kathiresan

DOI
https://doi.org/10.1038/s41598-024-56370-1
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 10

Abstract

Read online

Abstract The complexation behaviour of Diphenyl viologens (DPVs) with Cucurbit[n]urils (CB[n]) was evaluated in detail and the results were reported. In this work, we present the synthesis of various DPVs functionalised with electron withdrawing and electron donating groups (EWGs & EDGs) and investigate their complexation behaviour with CB[7] and CB [8]. Carboxylic acid functionalized DPV’s (DPV-COOH) complexation with CB[8] gives additional insights, i.e., indicates hydrogen bonding plays an effective role in the complexation. The formation of a 2:2 quaternary complex of DPV-COOH/CB[8] under neutral pH conditions was supported by various analytical techniques. The complexation of DPVs with CB[7] specifies that irrespective of the functional group attached, they all form a 1:2 ternary complex, but the findings elaborate that the pattern followed in the complexation depends on the EW or EDG attached to the DPVs. The competition experiments conducted between functionalized DPVs and CB[7], CB[8] shows that they have more affinity towards CB[8] than CB[7] because of the better macrocyclic confinement effect of CB[8], as confirmed using UV–Vis spectroscopy. The binding affinity among EWG and EDG functionalised DPVs with CB[8] concludes EDG functionalised DPVs show better affinity towards CB[8], because they can form a charge transfer complex inside the CB[8] cavity. Exploring these host–guest interactions in more complex biological or environmental settings and studying their impact on the functionality of DPVs could be an exciting avenue for future research.