Journal of Engineering Research - Egypt (Mar 2019)

Theoretical study of thermoelectric cooling system performance

  • A. Kabeel,
  • M. Mousa,
  • Moataz Elsayed

DOI
https://doi.org/10.21608/erjeng.2019.125472
Journal volume & issue
Vol. 3, no. March
pp. 10 – 19

Abstract

Read online

This work provides a theoretical investigation to study the effect of different operational parameters on theperformance of TE cooling system including the system COP and the rate of heat transfer. The parametersinvestigated are, the applied input power, inlet working fluid velocity, the arrangement of utilized TECs modules andfluid type. The geometry is created with ANSYS multi-physics software as a two-dimensional base case, it isconsisted from two attached horizontal ducts of length (520 mm) and (560 mm), the interface surface between the twoducts contains three thermoelectric modules (4 mm height by 40 mm wide and 40 mm length). The distance betweentwo consecutive thermoelectric modules (150 mm), the inlet and outlet duct diameter (15 mm) and the height of eachduct (10 cm), the inlet voltage to thermoelectric modules ranges from 8.0 V to 12 V and the water inlet velocity to thetwo ducts from 0.001 to 0.01 m/s. Theoretical results showed that the overall COP of TE cooling system is increasedwith the applied input power up to 8.0 W then it decreases with input power up to 18 W after that it takes nearly aconstant value, a noticeable enhancement in the COP is found when the three TECs are in use (Case 10) and the COPof TE cooling system using pure water and nanofluid with 0.05% of nanoparticles as coolants takes the maximumvalue.

Keywords