IET Radar, Sonar & Navigation (Apr 2023)

Space‐time adaptive processing algorithm based on hyper beamforming for ionospheric clutter suppression in small‐array high‐frequency surface wave radar

  • Jiaming Li,
  • Qiang Yang,
  • Xin Zhang

DOI
https://doi.org/10.1049/rsn2.12359
Journal volume & issue
Vol. 17, no. 4
pp. 545 – 555

Abstract

Read online

Abstract Small‐array high‐frequency surface wave radar (HFSWR) is widely used to monitor maritime targets as it can be used to save on‐land resources. In small‐array HFSWR systems, the main lobe of the receiving angle spectrum is significantly broadened. In complex clutter backgrounds, an extremely wide beam severely influences clutter suppression performance; consequently, targets with a low signal‐to‐clutter ratio (SCR) may be eliminated, or the angle may be barely estimated. This study proposes a space‐time adaptive processing (STAP) algorithm based on hyper beamforming (HBF) to improve the clutter suppression performance of small‐array HFSWR. In addition, HBF can obtain more independent identical distributed training samples than the conventional beamforming; thus, the STAP algorithm can extract the clutter information with high accuracy in the covariance matrix estimation. Moreover, this study combines an efficient STAP algorithm with a joint domain localised (JDL) algorithm to improve clutter suppression. Based on the experimental results, the proposed HBF‐JDL algorithm performs satisfactorily and significantly improves the SCR. Moreover, HBF‐JDL is still applicable at lower SCRs of the target compared with JDL.

Keywords